Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(17): 11270-11283, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629732

RESUMEN

Teeth exemplify architectures comprising an interplay of inorganic and organic constituents, resulting in sophisticated natural composites. Rodents (Rodentia) showcase extraordinary adaptations, with their continuously growing incisors surpassing human teeth in functional and structural optimizations. In this study, employing state-of-the-art direct atomic-scale imaging and nanoscale spectroscopies, we present compelling evidence that the release of material from ameloblasts and the subsequent formation of iron-rich enamel and surface layers in the constantly growing incisors of rodents are complex orchestrated processes, intricately regulated and independent of environmental factors. The synergistic fusion of three-dimensional tomography and imaging techniques of etched rodent́s enamel unveils a direct correlation between the presence of pockets infused with ferrihydrite-like material and the acid resistant properties exhibited by the iron-rich enamel, fortifying it as an efficient protective shield. Moreover, observations using optical microscopy shed light on the role of iron-rich enamel as a microstructural element that acts as a path for color transmission, although the native color remains indistinguishable from that of regular enamel, challenging the prevailing paradigms. The redefinition of "pigmented enamel" to encompass ferrihydrite-like infusion in rodent incisors reshapes our perception of incisor microstructure and color generation. The functional significance of acid-resistant iron-rich enamel and the understanding of the underlying coloration mechanism in rodent incisors have far-reaching implications for human health, development of potentially groundbreaking dental materials, and restorative dentistry. These findings enable the creation of an entirely different class of dental biomaterials with enhanced properties, inspired by the ingenious designs found in nature.


Asunto(s)
Esmalte Dental , Animales , Esmalte Dental/química , Esmalte Dental/metabolismo , Esmalte Dental/efectos de los fármacos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Ratas , Color , Ratones , Incisivo/química , Incisivo/metabolismo , Diente/química , Diente/metabolismo
2.
ACS Appl Mater Interfaces ; 14(14): 16147-16156, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357146

RESUMEN

Realization of all-solid-state batteries combined with metallic Li/Na is still hindered due to the unstable interface between the alkali metal and solid electrolytes, especially for highly promising thiophosphate materials. Artificial and uniform solid-electrolyte interphases (SEIs), serving as thin ion-conducting films, have been considered as a strategy to overcome the issues of such reactive interfaces. Here, we synthesized sulfide-based artificial SEIs (LixSy and NaxSy) on Li and Na by solid/gas reaction between the alkali metal and S vapor. The synthesized films are carefully characterized with various chemical/electrochemical techniques. We show that these artificial SEIs are not beneficial from an application point of view since they either contribute to additional resistances (Li) or do not prevent reactions at the alkali metal/electrolyte interface (Na). We show that NaxSy is more porous than LixSy, supported by (i) its rough morphology observed by focused ion beam-scanning electron microscopy, (ii) the rapid decrease of Rinterface (interfacial resistance) in NaxSy-covered-Na symmetric cells with liquid electrolyte upon aging under open-circuit potential, and (iii) the increase of Rinterface in NaxSy-covered-Na solid-state symmetric cells with Na3PS4 electrolyte. The porous SEI allows the penetration of liquid electrolyte or alkali metal creep through its pores, resulting in a continuous chemical reaction. Hence, porosity of SEIs in general should be carefully taken into account in the application of batteries containing both liquid electrolyte and solid electrolyte.

3.
ACS Appl Mater Interfaces ; 13(43): 51767-51774, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34669366

RESUMEN

Despite the fact that solid electrolyte interphases (SEIs) on alkali metals (Li and Na) are of great importance in the utilization of batteries with high energy density, growth mechanism of SEIs under an open-circuit potential important for the shelf life and the nature of ionic transport through SEIs are yet poorly understood. In this work, SEIs on Li/Na formed by bringing the electrodes in contact with ether- and carbonate-based electrolyte in symmetric cells were systematically investigated using diverse electrochemical/chemical characterization techniques. Electrochemical impedance spectroscopy (EIS) measurements linked with activation energy determination and cross-section images of Li/Na electrodes measured by ex situ FIB-SEM revealed the liquid/solid composite nature of SEIs, indicating their porosity. SEIs on Na electrodes are shown to be more porous compared to the ones on Li in both carbonate and glyme-based electrolytes. Nonpassivating nature of such SEIs is detrimental for the performance of alkali metal batteries. We laid special emphasis on evaluating time-dependent activation energy using EIS.

4.
Micron ; 140: 102979, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197749

RESUMEN

Electron transparent TEM lamella with unaltered microstructure and chemistry is the prerequisite for successful TEM explorations. Currently, TEM specimen preparation of quantum nanostructures, such as quantum dots (QDs), remains a challenge. In this work, we optimize the sample-preparation routine for achieving high-quality TEM specimens consisting of SrRuO3 (SRO) QDs grown on SrTiO3 (STO) substrates. We demonstrate that a combination of ion-beam-milling techniques can produce higher-quality specimens of quantum nanostructures compared to TEM specimens prepared by a combination of tripod polishing followed by Ar+ ion milling. In the proposed method, simultaneous imaging in a focused ion-beam device enables accurate positioning of the QD regions and assures the presence of dots in the thin lamella by cutting the sample inclined by 5° relative to the dots array. Furthermore, the preparation of TEM lamellae with several large electron-transparent regions that are separated by thicker walls effectively reduces the bending of the specimen and offers broad thin areas. The final use of a NanoMill efficiently removes the amorphous layer without introducing any additional damage.

5.
Nanomaterials (Basel) ; 10(2)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019197

RESUMEN

Nowadays, research on electrochemical storage systems moves into the direction of post-lithium-ion batteries, such as aluminum-ion batteries, and the exploration of suitable materials for such batteries. Vanadium pentoxide (V2O5) is one of the most promising host materials for the intercalation of multivalent ions. Here, we report on the fabrication of a binder-free and self-supporting V2O5 micrometer-thick paper-like electrode material and its use as the cathode for rechargeable aluminum-ion batteries. The electrical conductivity of the cathode was significantly improved by a novel in-situ and self-limiting copper migration approach into the V2O5 structure. This process takes advantage of the dissolution of Cu by the ionic liquid-based electrolyte, as well as the presence of two different accommodation sites in the nanostructured V2O5 available for aluminum-ions and the migrated Cu. Furthermore, the advanced nanostructured cathode delivered a specific discharge capacity of up to ~170 mAh g-1 and the reversible intercalation of Al3+ for more than 500 cycles with a high Coulomb efficiency reaching nearly 100%. The binder-free concept results in an energy density of 74 Wh kg-1, which shows improved energy density in comparison to the so far published V2O5-based cathodes. Our results provide valuable insights for the future design and development of novel binder-free and self-supporting electrodes for rechargeable multivalent metal-ion batteries associating a high energy density, cycling stability, safety and low cost.

6.
Nat Commun ; 6: 6045, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25599854

RESUMEN

LiFePO4 is one of the most frequently studied positive electrode materials for lithium-ion batteries during the last years. Nevertheless, there is still an extensive debate on the mechanism of phase transformation. On the one hand this is due to the small energetic differences involved and hence the great sensitivity with respect to parameters such as size and morphology. On the other hand this is due to the lack of in situ observations with appreciable space and time resolution. Here we present scanning transmission X-ray microscopy measurements following in situ the phase boundary propagation within a LiFePO4 single crystal along the (010) orientation during electrochemical lithiation/delithiation. We follow, on a battery-relevant timescale, the evolution of a two-phase-front on a micrometre scale with a lateral resolution of 30 nm and with minutes of time resolution. The growth pattern is found to be dominated by elastic effects rather than being transport-controlled.

7.
ACS Nano ; 8(7): 6840-8, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24940627

RESUMEN

A method for the formation of a low-temperature hybrid gate dielectric for high-performance, top-gate ZnO nanowire transistors is reported. The hybrid gate dielectric consists of a self-assembled monolayer (SAM) and an aluminum oxide layer. The thin aluminum oxide layer forms naturally and spontaneously when the aluminum gate electrode is deposited by thermal evaporation onto the SAM-covered ZnO nanowire, and its formation is facilitated by the poor surface wetting of the aluminum on the hydrophobic SAM. The hybrid gate dielectric shows excellent electrical insulation and can sustain voltages up to 6 V. ZnO nanowire transistors utilizing the hybrid gate dielectric feature a large transconductance of 50 µS and large on-state currents of up to 200 µA at gate-source voltages of 3 V. The large on-state current is sufficient to drive organic light-emitting diodes with an active area of 6.7 mm(2) to a brightness of 445 cd/m(2). Inverters based on ZnO nanowire transistors and thin-film carbon load resistors operate with frequencies up to 30 MHz.

8.
Nano Lett ; 14(1): 197-201, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24341867

RESUMEN

Plasmonics offers the opportunity of tailoring the interaction of light with single quantum emitters. However, the strong field localization of plasmons requires spatial fabrication accuracy far beyond what is required for other nanophotonic technologies. Furthermore, this accuracy has to be achieved across different fabrication processes to combine quantum emitters and plasmonics. We demonstrate a solution to this critical problem by controlled positioning of plasmonic nanoantennas with an accuracy of 11 nm next to single self-assembled GaAs semiconductor quantum dots, whose position can be determined with nanometer precision. These dots do not suffer from blinking or bleaching or from random orientation of the transition dipole moment as colloidal nanocrystals do. Our method introduces flexible fabrication of arbitrary nanostructures coupled to single-photon sources in a controllable and scalable fashion.


Asunto(s)
Arsenicales/química , Arsenicales/efectos de la radiación , Galio/química , Galio/efectos de la radiación , Nanopartículas/química , Nanopartículas/efectos de la radiación , Puntos Cuánticos , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Luz , Ensayo de Materiales , Nanopartículas/ultraestructura , Tamaño de la Partícula
9.
Phys Chem Chem Phys ; 13(21): 9973-7, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21387021

RESUMEN

We report on the successful dielectrophoretic trapping and electrical characterization of DNA-coated gold nanoparticles on vertical nanogap devices (VNDs). The nanogap devices with an electrode distance of 13 nm were fabricated from Silicon-on-Insulator (SOI) material using a combination of anisotropic reactive ion etching (RIE), selective wet chemical etching and metal thin-film deposition. Au nanoparticles (diameter 40 nm) coated with a monolayer of dithiolated 8 base pairs double stranded DNA were dielectrophoretically trapped into the nanogap from electrolyte buffer solution at MHz frequencies as verified by scanning and transmission electron microscopy (SEM/TEM) analysis. First electrical transport measurements through the formed DNA-Au-DNA junctions partially revealed an approximately linear current-voltage characteristic with resistance in the range of 2-4 GΩ when measured in solution. Our findings point to the importance of strong covalent bonding to the electrodes in order to observe DNA conductance, both in solution and in the dry state. We propose our setup for novel applications in biosensing, addressing the direct interaction of biomolecular species with DNA in aqueous electrolyte media.


Asunto(s)
ADN/química , Electroquímica/instrumentación , Oro/química , Nanopartículas/química , Nanotecnología/instrumentación , Silicio/química , Electrodos , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...